1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
| You are given N counters, initially set to 0, and you have two possible operations on them:
increase(X) − counter X is increased by 1, max counter − all counters are set to the maximum value of any counter. A non-empty array A of M integers is given. This array represents consecutive operations:
if A[K] = X, such that 1 ≤ X ≤ N, then operation K is increase(X), if A[K] = N + 1 then operation K is max counter. For example, given integer N = 5 and array A such that:
A[0] = 3 A[1] = 4 A[2] = 4 A[3] = 6 A[4] = 1 A[5] = 4 A[6] = 4 the values of the counters after each consecutive operation will be:
(0, 0, 1, 0, 0) (0, 0, 1, 1, 0) (0, 0, 1, 2, 0) (2, 2, 2, 2, 2) (3, 2, 2, 2, 2) (3, 2, 2, 3, 2) (3, 2, 2, 4, 2) The goal is to calculate the value of every counter after all operations.
Write a function:
class Solution { public int[] solution(int N, int[] A); }
that, given an integer N and a non-empty array A consisting of M integers, returns a sequence of integers representing the values of the counters.
Result array should be returned as an array of integers.
For example, given:
A[0] = 3 A[1] = 4 A[2] = 4 A[3] = 6 A[4] = 1 A[5] = 4 A[6] = 4 the function should return [3, 2, 2, 4, 2], as explained above.
Write an efficient algorithm for the following assumptions:
N and M are integers within the range [1..100,000]; each element of array A is an integer within the range [1..N + 1].
|